Second Order Stochastic Dominance

Definition
Suppose the random variables X and Y have support on $[l, u]$. Then X second-order stochastically dominates Y if
\[\int_l^a \Pr[X > t]dt \geq \int_l^a \Pr[Y > t]dt \]
for all a.

Results
1. If X first order stochastically dominates Y, then X second-order stochastically dominates Y.
 \[\Pr[X > t] \geq \Pr[Y > t] \]
 for all t. Integrating both sides over t gets the desired result.
2. If X second-order stochastically dominates Y, then $E[X] \geq E[Y]$.
 \[E[X] = l + \int_l^u [1 - F(t)]dt \]
 By second order stochastic dominance, this is greater than
 \[E[Y] = l + \int_l^u [1 - G(t)]dt \]
3. If X second-order stochastically dominates Y, then $h(X)$ second-order stochastically dominates $h(Y)$ for any increasing and concave function h.
 \[\Pr[X' > x] = \int_{l'}^{a'} \Pr[X > h^{-1}(x)]dx = \int_{l'}^{a'} [1 - F(h^{-1}(x))]dx \]
 Let $t = h^{-1}(x)$. Then $h(t) = x$. Hence, $h'(t)dt = dx$. Using the method of substitution, the integral is equal to
 \[\int_l^a (1 - F(t))h'(t)dt \]
Let $F^*(a) = \int_1^a (1 - F(t))dt$. Using integration by parts, this is equal to

$$\left[h'(t)F^*(t) \right]_{t=1}^{t=a} - \int_1^a h''(t)F^*(t)dt$$

Since $F^*(1) = 0$, we have

$$\int_1^a \Pr[X' > x]dx = h'(a)F^*(a) - \int_1^a h''(t)F^*(t)dt.$$

By second-order stochastic dominance, $F^*(t) \geq G^*(t)$ for all t. Furthermore, since $h'(a) \geq 0$ and $h''(t) \leq 0$, the above is greater than

$$\int_1^a \Pr[Y' > y]dy = h'(a)G^*(a) - \int_1^a h''(t)G^*(t)dt$$

for all a'.

4. X second-order stochastically dominates Y if and only if

$$E[h(X)] \geq E[h(Y)]$$

for all increasing and concave function h.

Proof. By 2 and 3 above, we obtain $\text{XSOSD } Y \implies E[h(X)] \geq E[h(Y)]$.

To prove the converse, suppose $E[h(X)] \geq E[h(Y)]$ for all increasing and concave function h. Consider the function,

$$h(t) = \begin{cases}
 t & \text{if } t \leq a, \\
 a & \text{if } t > a.
\end{cases}$$

Obviously h is increasing and concave. Now,

$$E[h(X)] = \int_1^a tf(t)dt + \int_a^1 af(t)dt$$

$$= \left[-t(1 - F(t))\right]_{t=1}^{t=a} + \int_1^a [1 - F(t)]dt + a(1 - F(a))$$

$$= \int_1^a [1 - F(t)]dt + l.$$

Similarly,

$$E[h(Y)] = \int_1^a [1 - G(t)]dt + l.$$

Therefore $E[h(X)] \geq E[h(Y)]$ implies that X second-order stochastically dominates Y.

2
4. If X second-order stochastically dominates Y, and if X and Y have the same mean, then $E[h(X)] \geq E[h(Y)]$ for all concave function h (notice that h does not have to be increasing).

Proof. Using integration by parts twice, we have

$$E[h(X)] = \int_l^u h(t)f(t)dt$$

$$= [h(t)(1 - F(t))]_{t=l}^{t=u} + \int_l^u h'(t)(1 - F(t)) dt$$

$$= [h(t)(1 - F(t))]_{t=l}^{t=u} + [h'(t)F^*(t)]_{t=l}^{t=u} + \int_l^u h''(t)F^*(t) dt$$

$$= h(l) + h'(u)F^*(u) + \int_l^u h''(t)F^*(t) dt.$$

Similarly,

$$E[h(Y)] = h(l) + h'(u)G^*(u) - \int_l^u h''(t)G^*(t) dt$$

But since $F^*(u) = G^*(u)$ if X and Y have the same mean, and since $F^*(t) \geq G^*(t)$, we have

$$E[h(X)] - E[h(Y)] = \int_l^u h''(t)(G^*(t) - F^*(t)) dt \geq 0.$$

5. If X second-order stochastically dominates Y, and if X and Y have the same mean, then X has a smaller variance than Y.

Proof.

Since X^2 is convex, result 4 implies that $E[X^2] \leq E[Y^2]$.

3