Informative Voting in Large Elections

ETTORE DAMIANO
University of Toronto

LI, HAO
University of British Columbia

WING SUEN
University of Hong Kong

February 5, 2018

Abstract. Recounting introduces multiple pivotal events in two-candidate elections. In addition to determining which candidate is elected, an individual’s vote is pivotal when the vote margin is just at the levels that would trigger a recount. In large elections, the motive to avoid recount cost can become the dominant consideration for rational voters, inducing them to vote informatively according to their private signals. In environments where elections without recount fail to aggregate information efficiently, a modified election rule with small recount cost can produce asymptotically efficient outcomes in the best equilibrium, with a vanishingly small probability of actually invoking a recount. In environments where efficient information aggregation obtains in elections without recount, introducing recount can reduce the size of the electorate needed for the equilibrium outcome to converge to an information efficient outcome.

JEL classification. C72, D72, D82

Keywords. recount, multiple pivotal events, preference-independent voting, information efficiency
1. Introduction

More than two centuries ago Condorcet (1875) first articulated the idea that voting groups with diverse information about their alternatives make a better choice the larger the group size. This celebrated Condorcet jury theorem is a statistical proposition based on an early application of the law of large numbers. It is an important result that gives confidence to our belief that large elections can resolve conflicts due to dispersed information and produce good collective decisions.

Although intuitively appealing, the presumed sincere-voting behavior by the electorate has been re-examined by economists who study this topic. Austen-Smith and Banks (1996) point out how informative voting—that is, voting according to one’s own private signal—is generally inconsistent with rationality (see also Feddersen and Pesendorfer, 1996). Since a non-pivotal vote does not affect the outcome and is thus payoff-irrelevant, rational voting behavior requires conditioning one’s vote on the information inferred from the vote being pivotal as well as on one’s own private information. In a large election, the information inferred from being pivotal can overwhelm one’s own private information. Thus, informative voting generally fails in a large election except for a small fraction of informed voters.

The failure of informative voting notwithstanding, Feddersen and Pesendorfer (1997) show that in a large two-candidate election the outcome is information efficient in the sense that almost surely it would remain the same even if all the private information about the candidates became common knowledge. Under any election rule, the outcome in a large election would be determined by the corresponding decisive voter’s preference if the private information were perfectly aggregated. For example, under the simple majority rule, the decisive voter has the median preference in the electorate. Similarly, under strategic voting, votes are cast as if the election is close and the decisive voter is indifferent between the two candidates. Even though the fraction of voters whose vote depends on their private signals is small in a large election, their number goes to infinity. It is these voters that determine the election outcome, ensuring that the outcome is information efficient.

Nevertheless, there are environments in which information efficiency fails under strategic voting even though it could obtain had all informed voters voted informatively. One such environment involves “aggregate uncertainty,” where there are partisan voters who randomly split their votes between the two candidates, result-
ing in uncertainty in realized vote shares even when the number of voters becomes arbitrarily large (Feddersen and Pesendorfer, 1997). Another environment involves conflicting preferences, where the same change in the public belief about a candidate can increase his appeal to some voters but lower his appeal to other voters (Bhattacharya, 2013).

In this paper, we resurrect informative voting as an equilibrium strategy in large two-candidate elections by introducing other pivotal events in addition to the standard one that determines the eventual winner. Although there are many ways to introduce additional pivotal events, we adopt a model of costly recounting. An election rule in this model is characterized by three thresholds of vote shares for a given candidate and a positive recount cost. If the vote share for the candidate exceeds the largest threshold then that candidate is declared an outright winner; and symmetrically, if the vote share falls below the smallest threshold then the opposing candidate is declared an outright winner. If the vote share falls between the smallest and the largest thresholds, a “recount” takes place after each voter incurs the recount cost. The candidate is declared the winner if the vote share upon recount is above the middle threshold, and the opposing candidate wins otherwise. We study information aggregation in an environment with finitely many states and conditionally independent private signals. We explicitly model the presence of aggregate uncertainty, while we leave the description of strategic voters preferences as general as possible, to include the broadest set of environments including models such as that of Bhattacharya (2013), where preferences are non-monotone in the state. Aggregate uncertainty is modeled by the presence of non-strategic uninformed voters (who do not receive private signals); the fraction of uninformed voters voting for a given candidate remains random even in large elections.

Our main result establishes that, whenever efficient information aggregation is achievable, it is the asymptotic outcome of a sequence of equilibria in elections with recounting, in which every agent votes informatively. In our model, corresponding to the middle threshold is the standard pivotal event that votes for the two candidates are tied. Costly recounting creates two additional pivotal events: corresponding to the largest threshold is the pivotal event when one more vote for the given candidate would make him an outright winner and one more vote for the opponent would trigger a costly recount but would not change the winner, and corresponding to the smallest threshold is the symmetric pivotal event. Although the probabili-
ties of the three pivotal events conditional on the state all vanish in the limit, one of them becomes dominant because its conditional probability goes to zero at the slowest rate. This is a consequence of the theory of large deviations, which studies the limit behavior of rare events.\footnote{See, for example, Dembo and Zeitouni (1998) for a textbook treatment.} In our equilibrium construction, the pivotal events where a recount can be triggered always dominate the pivotal event that determines who wins the election. At these pivotal events, the desire to save the recount cost is the only motive, hence voters’ incentives are entirely aligned. Each votes for one candidate or the other depending on which of the two pivotal events is more likely, as a function of his private signal.

Our election rule with recounting aggregates information efficiently in the best equilibrium, whenever that is possible. This result holds even in environments where a standard election rule would fail to do so. Furthermore, we show that the probability of recounting and thus incurring the cost in equilibrium is negligible in large elections. Hence, the improvement in information aggregation is achieved at no cost. Finally, we show that in environments where a standard election without recounting aggregates information efficiently, recounting still improves the outcome by increasing the rate of convergence to the information efficient outcome. In other words, the same desired level of information efficiency can be obtained by an electorate of smaller size under an election rule with recounting than under a standard election rule with no recounting.

2. A Model of Elections with Recounting

We study an election with a large number $n + 1$ of voters to choose between two candidates: \mathcal{R} and \mathcal{L}. Denote the share of votes for \mathcal{R} as V. An “election rule” consists of three thresholds $v_{\mathcal{L}}, v_{\mathcal{C}}$ and $v_{\mathcal{R}}$, satisfying $v_{\mathcal{L}} < v_{\mathcal{C}} < v_{\mathcal{R}}$, and specifies:

1. candidate \mathcal{R} is elected if $V > v_{\mathcal{R}}$;
2. candidate \mathcal{L} is elected if $V < v_{\mathcal{L}}$;
3. a “recount” is triggered at an additive payoff loss of $\delta > 0$ to each voter if $V \in [v_{\mathcal{L}}, v_{\mathcal{R}}]$; and after the recount, candidate \mathcal{R} is elected if $V \geq v_{\mathcal{C}}$ and candidate \mathcal{L} is elected otherwise.

Note that a standard election rule without recounting can be represented as a
special case of election rule defined above, with $\delta = 0$. We assume that there is no error in the initial vote count stage or in the the recount stage. Therefore the vote share for R in the recount stage will be exactly the same as that recorded in the initial count. We do not consider unanimity rules; both v_R and v_L are assumed to be strictly between 0 and 1.

Voters are independently drawn from a large population of potential voters. A fraction $1 - \alpha \in (0, 1]$ of potential voters are informed voters; the rest are uninformed. There is a finite number, M, of payoff relevant states of the world $S = \{s_1, \ldots, s_M\}$. States are ordered with $s_1 < \cdots < s_M$, and voters’ common prior belief over S is described by the distribution $\mu = (\mu_1, \ldots, \mu_M)$, with μ_i being the probability of state s_i. Each informed voter observes a conditionally independent signal $\sigma \in \Sigma = \{\sigma_1, \ldots, \sigma_J\}$ informative of the realized state.

Assumption 1. The signal’s conditional distributions, $\beta(\cdot|s)$, satisfy the monotone likelihood ratio property:

$$\frac{\beta(\sigma|s)}{\beta(\sigma'|s)} > \frac{\beta(\sigma'|s')}{\beta(\sigma|s')}$$

for all $\sigma > \sigma'$ and $s > s'$.

An immediate implication of Assumption 1 is that the posterior distributions over S after observing a signal realization, $\{\mu^\sigma\}_{\sigma \in \Sigma}$, are ordered with respect to first order stochastic dominance, so that the higher the signal observed, the more an informed agent revises his expectation about the realized state upward.

Uninformed voters are introduced to preserve uncertainty about the realized vote share in each given state s in large elections. They are non-strategic; a fraction θ of them vote for candidate R and the remaining fraction $1 - \theta$ vote for L. The fraction θ is a random variable distributed on $[\underline{\theta}, \overline{\theta}] \subset [0, 1]$, with a continuous and positive density function f and corresponding distribution function F. The aggregate uncertainty state θ is independent of the payoff state s.

Informed voters are heterogeneous with respect to a preference type $t \in T$. The distribution of preference types among the population of potential informed voters

2 The uninformed voters are partisan in the sense that they have preferences between the two candidates that cannot be swayed by any evidence. Otherwise, they may optimally choose to abstain from voting. See Feddersen and Pesendorfer (1996).
is described by a probability measure P over T. A payoff function, $w : \{L, R\} \times S \times T \to \mathbb{R}$, describes the payoff (without considering recounting cost) to an informed voter as a function of the candidate elected, the realized payoff relevant state, and the voter’s type. The voter’s payoff is reduced by δ if the same election outcome is achieved after a recount. We make the following joint assumption over the payoff function and the distribution of preference types:

Assumption 2. The payoff difference $u(s, t) \equiv w(R, s, t) - w(L, s, t)$, and the distribution of preference types P satisfy

$$P (\{t \in T \mid u(s, t) > 0\}) > P (\{t \in T \mid u(s', t) > 0\}) \quad \text{for all } s > s'.$$

Under Assumption 2, in a large election with only informed voters and perfect information, the unique equilibrium outcome in undominated strategies would be monotone in the state. This assumption implies that the full information outcome has a “threshold” structure, with the winner changing at most once as a function of the realized payoff state. A sufficient condition for Assumption 2 is the commonly used requirement (e.g., Federsen and Pesendorfer (1997)) of “state-monotone preferences” that $u(\cdot, t)$ is increasing. Monotone preferences are not, however, necessary. Assumption 2 is also satisfied, for example, in Bhattacharya’s (2013) model where, for a majority of voters u is increasing in s, and for a minority of voters the opposite is true.

2.1. Strategy and equilibrium

For a given n, we consider a voting game with $n + 1$ voters, Γ^n, described by: (i) the election rule $\{v_L, v_C, v_R\}$ and δ; (ii) the payoff relevant states S, the preference type space T, and the payoff function $u : S \times T \to \mathbb{R}$; and (iii) the prior belief μ over S, the probability measure P over T, the distribution function over the aggregate uncertainty state F, as well as the set of signals Σ and the conditional probability distributions over Σ, $\{\beta(\cdot | s)\}_{s \in S}$. These are all common knowledge. Ultimately we are interested voting games with large n, so we will ignore all integer problems. The solution concept is Bayesian Nash equilibrium and we restrict attention to symmetric equilibria.

Fix some informed voter. Denote as v the number of votes for candidate R from all voters other than this voter, divided by the total number of votes n from these
voters. Let $g^n(\cdot|s)$ represent the probability function of v in state s. This function is derived from the strategies adopted by all other voters. Since no voter observes the identity of the other n voters, and the payoff state s is independent of the uncertainty state θ, the function $g^n(\cdot|s)$ depends neither on the preference type t nor on the private signal σ observed by the informed voter.

Upon observing a private signal realization $\sigma \in \Sigma$, an informed voter’s private belief that the state is s becomes

$$
\mu^\sigma(s) = \frac{\mu(s)\beta(\sigma|s)}{\sum_{s' \in S} \mu(s')\beta(\sigma|s')}.
$$

There are three events in which his vote is pivotal:

1. $v = v_L$: Regardless of the state, voting R instead of L triggers a recount, incurring a cost of δ.

2. $v = v_C$: Voting R instead of L tilts the election outcome (after the recount) to R. This changes the voter’s payoff by $u(s,t)$ when the state is s.

3. $v = v_R$: Regardless of the state, voting R instead of L determines the outcome of the election immediately, saving the recount cost δ.

Therefore, upon observing a private signal σ, voting for R yields a larger expected payoff than voting for L if

$$
\sum_{s \in S} \mu^\sigma(s) (g^n(v_R|s)\delta + g^n(v_C|s)u(s,t) - g^n(v_L|s)\delta) - g^n(v_R|s)\delta) \geq 0
$$

A strategy profile describes the probability the an informed voter casts a vote in favor of R as a function of both his preference type t and the realization of his private signal σ. Thus a strategy profile is a function

$$
k : T \times \Sigma \rightarrow [0,1].
$$

Definition 1. An equilibrium of the Bayesian game Γ^n is a strategy profile k^n such that, for all $t \in T$ and $\sigma \in \Sigma$,

$$
\left(\sum_{s \in S} \mu^\sigma(s) (g^n(v_R|s;k^n)\delta + g^n(v_C|s;k^n)u(s,t) - g^n(v_L|s;k^n)\delta)\right) k^n(t,\sigma) \geq 0,
$$

$$
\left(\sum_{s \in S} \mu^\sigma(s) (g^n(v_R|s;k^n)\delta + g^n(v_C|s;k^n)u(s,t) - g^n(v_L|s;k^n)\delta)\right) (1 - k^n(t,\sigma)) \leq 0.
$$
The above definition simply states the mixed-strategy Nash equilibrium requirement that a strategic voter must cast with probability one a vote that yields a strictly larger expected payoff, where expectations are taken with respect to the probability functions \(g^n(\cdot|\cdot; k^n) \) obtained from the primitives of the game and from the equilibrium strategy profile \(k^n \).

Our results do not depend on the properties of \(T \) or \(u \), so we only impose the minimal requirement (which is already implicit in Assumption 2) that the function \(u(s, \cdot) \) is \(T \)-measurable for each state \(s \in S \). We also restrict the strategy space to those functions \(k \) such that \(k(\cdot, \sigma) \) is \(T \)-measurable for each \(\sigma \), so that the integral of \(k(\cdot, \sigma) \) with respect to the probability measure \(P \) is well defined. We denote such integral as

\[
H(\sigma; k) \equiv \int_T k(t, \sigma) \, dP(t).
\]

Given a strategy profile \(k \), the function \(H(\cdot; k) \) describes the probability that a randomly drawn informed voter casts a vote for \(R \) as a function of the private signal \(\sigma \) he observes.

For any strategy profile \(k \), we are now ready to define with \(z(s, \theta; k) \) the probability that a randomly drawn voter casts a vote for candidate \(R \) in the payoff state \(s \) and aggregate uncertainty state \(\theta \). This is given by

\[
z(s, \theta; k) = (1 - \alpha) \sum_{\sigma \in \Sigma} H(\sigma; k) \beta(\sigma|s) + \alpha \theta. \tag{1}
\]

We will refer to \(z(s, \theta; k) \) as the vote share for candidate \(R \) in state \((s, \theta) \) given the strategy profile \(k \).

Given \(z(s, \theta; k) \), from the perspective of each individual informed voter, the probability of a vote share \(v \) for candidate \(R \) conditional on the payoff state \(s \) and the aggregate uncertainty state \(\theta \) is given by:

\[
g^n(v|s, \theta; k) = \binom{n}{nv} z(s, \theta; k)^{nv} (1 - z(s, \theta; k))^{n(1-v)}, \tag{2}
\]

and thus

\[
g^n(v|s; k) = \int_{\theta} g^n(v|s, \theta; k) f(\theta) \, d\theta.
\]

To avoid dealing with integer problems, when using the above expression of \(g^n(\cdot|s; k) \) in Definition 1 to derive the explicit constraints for a strategy profile \(k^n \) to
be a Bayesian Nash equilibrium of the game Γ^n, we implicitly assume that nv_L, nv_C and nv_R are integers. Given our focus on the limit case for n large, it is equivalent to assuming that the voting rule thresholds are rational numbers.

2.2. Ranking of pivotal events

Fix a strategy profile k and the implied vote share functions $z(s, \theta; k)$. In a large election, the probability that the actual vote share equals a particular value v is vanishingly small. A key observation of this paper is that the rates at which the probabilities of different pivotal events go to zero are different, so that in the limit some pivotal events are infinitely more likely to occur than others. Calculating the rate of convergence is therefore an important part of the analysis of large elections with multiple pivotal events.

If voters knew the aggregate uncertainty state θ, then the probability that the vote share equals v is given by the binomial probability $g^n(v|s, \theta; k)$ in equation (2). Using Stirling’s approximation formula for the binomial coefficient, we have

$$g^n(v|s, \theta; k) = \frac{\phi^n_v}{\sqrt{2\pi nv(1-v)n}} I(v; z(s, \theta; k))^n,$$

where

$$I(v; z) = \left(\frac{z}{v} \right)^v \left(\frac{1-z}{1-v} \right)^{1-v},$$

and $\lim_{n \to \infty} \phi^n_v = 1$. The function $-\log I(v; z)$ is known as the “rate function” or “entropy function” in the theory of large deviations. It determines the rate at which the probability $g^n(v|s, \theta; k)$ goes to zero. In particular, if there are two events v and v' such that $I(v; z(s, \theta; k)) > I(v'; z(s, \theta; k))$, then

$$\lim_{n \to \infty} \frac{g^n(v'|s, \theta; k)}{g^n(v|s, \theta; k)} = \lim_{n \to \infty} \left(\frac{I(v'|z(s, \theta; k))}{I(v; z(s, \theta; k))} \right)^n = 0.$$

In our model an informed voter does not know the aggregate uncertainty state θ. The probability that he assigns to a certain pivotal event v to occur in the payoff relevant state s, $g^n(v|s; k)$, is the integral of $g^n(v|s, \theta; k)$ over all possible aggregate uncertainty states θ. The following lemma shows that in determining the rate of convergence, only the state θ which maximizes the function $I(v; z(s, \theta; k))$ matters.

Lemma 1. Let $\theta(v, s) \equiv \arg \max_{\theta \in [0,1]} I(v; z(s, \theta; k))$. For any v, v' and any s, s',

$$\lim_{n \to \infty} \frac{g^n(v|s; k)}{g^n(v'|s'; k)} = \frac{f(\theta(v, s))}{f(\theta(v', s'))} \lim_{n \to \infty} \frac{g^n(v|s, \theta(v, s); k)}{g^n(v'|s', \theta(v', s'); k)}.$$
Proof. The function \(I(v; z) \) increases in \(z \) for \(z < v \) and decreases in \(z \) for \(z > v \), attaining a maximum at \(z = v \). Since \(z(s, ; k) \) is strictly increasing, \(I(v; z(s, \theta; k)) \) is increasing in \(\theta \) for \(\theta < \theta(v, s) \) and decreasing in \(\theta \) for \(\theta > \theta(v, s) \). Let \(B_c(v, s) \subset [\theta, \bar{\theta}] \) be a small interval of width \(\epsilon \) that contains \(\theta(v, s) \). Specifically, if \(\theta(v, s) = \underline{\theta} \), choose \(B_c(v, s) = [\underline{\theta}, \bar{\theta}] \) where \(\bar{\theta} = \theta + \epsilon \); and if \(\theta(v, s) = \bar{\theta} \), choose \(B_c(v, s) = (\underline{\theta}, \bar{\theta}] \) where \(\underline{\theta} = \bar{\theta} - \epsilon \). If \(\theta(v, s) \) is interior, choose \(B_c(v, s) = (\underline{\theta}, \bar{\theta}) \) such that \(\bar{\theta} - \underline{\theta} = \epsilon \) and \(I(v; z(s, \underline{\theta}; k)) = I(v; z(s, \bar{\theta}; k)) \). Denote \(B^c_c(v, s) = [\theta, \bar{\theta}] \setminus B_c(v, s) \) to be the complement of \(B_c(v, s) \). Note that \(I(v; z(s, \theta; k)) > I(v; z(s, \theta'; k)) \) for any \(\theta \in B_c(v, s) \) and \(\theta' \in B^c_c(v, s) \).

For any pivotal event \(v \) and any state \(s \), we have
\[
\int_{B^c_c(v, s)} g^n(v|s, \theta) f(\theta) \, d\theta < g^n(v|s, \theta') \Pr[\theta \in B^c_c(v, s)],
\]
where \(\theta' \) is equal to \(\underline{\theta} \) or \(\bar{\theta} \). Continuity of \(g^n(v|s, \cdot) \) also implies that there is a \(\hat{\theta}_n \in B_c(v, s) \) such that
\[
\int_{B_c(v, s)} g^n(v|s, \theta) f(\theta) \, d\theta = g^n(v|s, \hat{\theta}_n) \Pr[\theta \in B_c(v, s)].
\]
We further claim that \(\lim_{n \to \infty} \hat{\theta}_n = \theta(v, s) \). To see this, note that by definition
\[
\lim_{n \to \infty} \int_{B_c(v, s)} \frac{g^n(v|s, \theta)}{g^n(v|s, \hat{\theta}_n)} f(\theta) \, d\theta = \Pr[\theta \in B_c(v, s)],
\]
which is only possible if \(\hat{\theta}_n \) converges to \(\theta(v, s) \), because from the fact that \(\theta(v, s) \) maximizes \(I(v; z(s, \theta; k)) \), we must have \(\lim_{n \to \infty} g^n(v|s, \theta) / g^n(v|s, \theta(v, s)) = 0 \) for all \(\theta \neq \theta(v, s) \).

From the two conditions above, we obtain that for any \(\epsilon > 0 \),
\[
\lim_{n \to \infty} \int_{B_c(v, s)} g^n(v|s, \theta) f(\theta) \, d\theta \leq \lim_{n \to \infty} \frac{g^n(v|s, \theta') \Pr[\theta \in B^c_c(v, s)]}{g^n(v|s, \hat{\theta}_n) \Pr[\theta \in B_c(v, s)]} = 0,
\]
where the equality follows because \(\lim_{n \to \infty} g^n(v|s, \theta') / g^n(v|s, \theta) = 0 \) whenever \(\theta' \in B^c_c(v, s) \) and \(\theta \in B_c(v, s) \), and because \(\hat{\theta}_n \) is bounded away from \(\theta' \).

For any \(v, v' \) and \(s, s' \),
\[
\lim_{n \to \infty} \frac{g^n(v|s)}{g^n(v'|s')} = \lim_{n \to \infty} \frac{\int_{\theta} g^n(v|s, \theta)f(\theta) \, d\theta}{\int_{\theta} g^n(v'|s', \theta)f(\theta) \, d\theta} = \lim_{n \to \infty} \frac{\int_{B_c(v, s)} g^n(v|s, \theta)f(\theta) \, d\theta}{\int_{B_c'(v', s')} g^n(v'|s', \theta)f(\theta) \, d\theta},
\]
where the last equality follows from (4). The above holds for any \(\epsilon \) positive and thus

\[
\lim_{n \to \infty} g^n(v|s) = \lim_{\epsilon \to 0} \lim_{n \to \infty} \int_{B_\epsilon(v,s)} g^n(v,s,\theta) f(\theta) \, d\theta.
\]

Reversing the limit order and calculating the inner limit using l’Hôpital’s rule, we obtain the desired result.

Lemma 1 implies that given a sequence of strategy profiles \(\{k^n\}_{n=1,2,...} \), the ratio \(g^n(v|s;k^n)/g^n(v'|s';k^n) \) for any pair of pivotal events \(v,v' \) and any pair of payoff states \(s,s' \) can have a limit different from zero or infinity only if

\[
\lim_{n \to \infty} I(v;z(s,\theta(v,s);k^n)) - I(v';z(s',\theta(v',s');k^n)) > \epsilon > 0 \text{ for all } n \text{ sufficiently large suffices for } v \text{ to dominate } v' \text{ in state } s.
\]
3. Information Efficient Equilibria

The central question of the paper is whether recounting can help achieve the same outcome as in an election with just informed voters and common knowledge of all the private signals about the payoff-relevant states. Our model of recount elections generally admits multiple equilibria. In this section and the next, we focus on the best equilibrium in terms of information efficiency. Section 5.1 provides a discussion on other equilibria of the model.

In an election where private signals about the payoff-relevant state are perfectly aggregated (and with neither recounting nor aggregate uncertainty), Assumption 1 implies that either candidate L always wins, or candidate R always wins, or there is some state $s^* \in \{2, \ldots, M\}$ such that candidate R is elected for all $s \geq s^*$ while candidate L is elected for $s < s^*$. We focus on the last case, so that the full information outcome is not common knowledge, and efficiently aggregating the voters information is necessary to achieve it.\(^3\) The full information outcome selects, in each state s, candidate R if a v_C-majority of voter favors it in state s, and L otherwise.\(^4\) Definition 3 below, adapted from Feddersen and Pesendorfer (1997), reflects the presence of aggregate uncertainty in our model, and requires that the election outcome is not affected by the aggregate uncertainty state realization.

Definition 3. A sequence of strategy profiles achieves full information equivalence if for all $\epsilon > 0$, there is an N such that for $n > N$ and for any realization of the uncertainty state θ, candidate L is chosen with probability greater than $1 - \epsilon$ when the payoff relevant state is $s < s^*$, and candidate R is chosen with probability greater than $1 - \epsilon$ if $s \geq s^*$.

In the presence of aggregate uncertainty, full information equivalence may not be possible. While the aggregate information available to informed voters would always be sufficient to identify the payoff relevant state in a large election, the noise introduced in the voting outcome by the behavior of uninformed voters (modeled as the aggregate uncertainty state) may be large enough that no sequence of strategy profiles ever satisfy the conditions in Definition 3. The following definition describes a necessary and sufficient condition for full information equivalence to be possible.

\(^3\)The first part of the Proposition 1 remains valid if candidate L always wins or if candidate R always wins, but the equilibrium construction does not satisfy condition (7) of Lemma 3.

\(^4\)When preferences are monotone in the preference type as well as in the state, as in Feddersen and Pesendorfer (1997), this coincide with the outcome preferred by the v_C-median voter.
Its failure implies that no electoral rule can ever yield the outcome preferred by the \(v_C \)-majority of informed voter for every payoff relevant state.

Definition 4. For a given electoral rule, full information equivalence is **achievable** if there exists a strategy profile \(k \) such that

\[
z(s, \theta; k) < v_C < z(s', \theta; k) \quad \text{for all } s < s^* \text{ and } s' \geq s^*.
\] (6)

The share of uninformed votes for \(\mathcal{R} \) is largest in the aggregate uncertainty state \(\bar{\theta} \) and smallest in the aggregate uncertainty state \(\theta_0 \). Full information equivalence requires that voting by informed voters generates a sufficiently large spread of \(\mathcal{R}' \)'s vote share between “high states” (i.e., \(s' \geq s^* \)) and “low states” (i.e., \(s < s^* \)), so that the election outcome is determined by informed voters only and not by the aggregate uncertainty state. Note that full information equivalence is achievable only if a non-negligible measure of types vote “informatively,” i.e., change their vote as their private signal varies. Finally, it is worth remarking that whether full information equivalence is achievable depends jointly on the outcome-determining threshold \(v_C \) together with the informativeness of the agents’ signals and the distribution of aggregate uncertainty. It does not depend, however, on whether the election has recounting (i.e., \(\delta > 0 \)), or on the values of the recounting thresholds \(v_L \) and \(v_R \).

Next we introduce a class of strategy profiles that are “monotone in signals,” and we show that whether a monotone strategy profile can distinguish between the threshold state \(s^* \) and its immediately preceding states \(s^*_1 \) is a sufficient test for the achievability of full information equivalence.

Definition 5. A strategy profile \(k \) is **monotone** if, for all \(t \in \mathcal{T} \),

\[
\begin{align*}
k(t, \sigma) > 0 & \implies k(t, \sigma') = 1 \quad \text{for all } \sigma' > \sigma; \\
k(t, \sigma) < 1 & \implies k(t, \sigma') = 0 \quad \text{for all } \sigma' < \sigma.
\end{align*}
\]

Given a monotone strategy profile, each type randomizes its vote for at most one signal realization, and the probability of casting a vote for \(\mathcal{R} \) is non-decreasing in the signal realization. The following lemma provides the intuitive result that full information equivalence is achievable if and only if it is achievable in monotone strategies.
Lemma 2. For any electoral rule, full information equivalence is achievable if and only if there exists a monotone strategy profile k such that

$$z(s^*, \theta; k) < v_C < z(s^*, \theta; k).$$

Proof. Sufficiency follows from Assumption 1, because $z(s, \theta; k)$ is increasing in the payoff relevant state s for every monotone strategy profile k. The only if part of the statement follows because any strategy profile k satisfying the achievability condition (6) can be changed into a monotone strategy satisfying the same property by the following transformation. For each t, let $\tilde{k}(t, \cdot)$ be the monotone strategy such that

$$\sum_{\sigma \in \Sigma} \beta(\sigma|s^*) \tilde{k}(t, \sigma) = \sum_{\sigma \in \Sigma} \beta(\sigma|s^*) k(t, \sigma).$$

By construction, $z(s^*, \theta, \tilde{k}) = z(s^*, \theta, k)$. By Assumption 1, $z(s^*, \theta, \tilde{k}) \leq z(s^*, \theta, k)$. $lacksquare$

For monotone strategies, Assumption 1 implies that candidate R’s vote share, $z(s, \theta; k)$, is an increasing function of the state. This observation, together with Lemma 1, immediately imply the following result, which will be critical in our equilibrium construction.

Lemma 3. Let $\{k^n\}$ be a sequence of monotone strategy profiles such that

$$z(s^*_{\text{\scriptsize L}}, \theta; k^n) < v_L < v_R < z(s^*_{\text{\scriptsize R}}, \theta; k^n) \quad \text{for all } n \text{ sufficiently large.} \quad (7)$$

Then, the pivotal event v_L dominates v_C and v_R for all $s \leq s^*_{\text{\scriptsize L}}$, and the pivotal event v_R dominates v_C and v_L for all $s \geq s^*_{\text{\scriptsize R}}$.

A sequence of strategy profiles satisfying condition (7) in Lemma 3 would also achieve full information equivalence. The opposite is not true in general. Nevertheless, any sequence of monotone strategy profiles that achieves full information equivalence would also satisfy (7) provided that the recounting thresholds v_L and v_R are close enough to v_C.

Our main result will show that, whenever full information equivalence is achievable, in an election with recounting there is a sequence of equilibrium strategy profiles that does so for all v_L and v_R sufficiently close to v_C. The equilibrium construction will also satisfy condition (7). This implies that not only full information equivalence obtains, but also a costly recounting is never triggered in the limit, thus the election with recounting achieves the first-best efficient outcome in the limit.
Proposition 1. Suppose full information equivalence is achievable for an electoral rule. If \(\delta > 0 \) and \(v_L, v_R \) are sufficiently close to \(v_C \), there exists a sequence of monotone strategy profiles \(\{k^n\} \) that achieves full information efficiency, and such that \(k^n \) is an equilibrium of the game \(\Gamma^n \) for each \(n \). Further, the probability that voters pay the recount cost \(\delta \) vanishes as \(n \) grows.

We establish Proposition 1 via a fixed-point argument in type-independent monotone strategies. Any type-independent monotone strategy can be described by a single variable \(\psi \in [0, J] \). The unique strategy profile \(k \) associated to \(\psi \) is given by:

\[
k(t, \sigma_j) = \begin{cases}
0 & \text{if } j \leq \psi, \\
1 & \text{if } j \geq \psi + 1, \\
 j - \psi & \text{otherwise.}
\end{cases}
\]

The integer part of \(\psi \) describes the highest signal for which all types vote for \(L \), the decimal part of \(\psi \) describes the probability of voting for \(L \) when observing the next signal, and for all higher signals all types vote for \(R \).

In any sufficiently large election, the best response of any type to a strategy profile \(k \) that satisfies condition (7) must be “almost type-independent,” meaning that there is only one signal realization such that the best responses of any two types may differ. In other words, if type \(t \) weakly prefers to vote for \(R \) at signal realization \(\sigma \), then any type \(t' \) must strictly prefer to vote for \(R \) at signal realization \(\sigma' > \sigma \):

\[
\sum_{s \in S} \mu^c(s) \left(g^n(v_R|s;k) \delta + g^n(v_C|s;k) u(s,t) - g^n(v_L|s;k) \delta \right) \geq 0 \implies \\
\sum_{s \in S} \mu^c(s) \left(g^n(v_R|s;k) \delta + g^n(v_C|s;k) u(s,t') - g^n(v_L|s;k) \delta \right) > 0. \tag{8}
\]

To see why this is true, rewrite the first inequality of (8) as

\[
\sum_{s \geq s^*} \mu^c(s) \left(g^n(v_R|s;k) \delta + g^n(v_C|s;k) u(s,t) - g^n(v_L|s;k) \delta \right) g^n(v_C|s^*;k) \geq \\
\sum_{s < s^*} \mu^c(s) \left(- g^n(v_R|s;k) \delta - g^n(v_C|s;k) u(s,t) + g^n(v_L|s;k) \delta \right) g^n(v_C|s^*;k).
\]

For \(n \) large, by Lemma 3 the left-hand-side of the above becomes arbitrarily close to \(\mu^c(s^*) g^n(v_R|s^*;k) \delta \) and the right-hand-side arbitrarily close to \(\mu^c(s^*) g^n(v_L|s^*;k) \delta \). Because these two dominant terms do not depend on preference type \(t \), the claim
(8) then follows from observing that \(\frac{\mu''(s^*)}{\mu''(s^*_-)} \) is strictly increasing in \(\sigma \) by Assumption 1.

Consider an “almost type-independent” strategy \(k \), and let \(\sigma_j \) be the signal realization for which this strategy is type-dependent. The probability that a randomly drawn informed voter with a private signal \(\sigma_j \) would vote for \(\mathcal{R} \) is \(\int_T k(t, \sigma_j) \, dP(t) \).

Now, consider the type-independent strategy profile
\[
\Psi(k) = j + 1 - \int_T k(t, \sigma_j) \, dP(t).
\]

The strategy profiles \(k \) and \(\Psi(k) \) are identical for every signal realization \(\sigma < \sigma_j \) (every type votes for \(\mathcal{L} \)) and \(\sigma > \sigma_j \) (every type votes for \(\mathcal{R} \)). They may differ for the realization \(\sigma_j \); however the probability that a randomly drawn type with signal \(\sigma_j \) votes for \(\mathcal{R} \) is the same for the two profiles. By construction, \(k \) and \(\Psi(k) \) generate the same distribution of vote shares for \(\mathcal{R} \); that is, for all vote shares \(v \) and for all payoff states \(s \),
\[
g^n(v | s; k) = g^n(v | s; \Psi(k)).
\]

This implies that the set of best responses to \(k \) and to \(\Psi(k) \) coincide. Suppose \(\psi \) is a type-independent monotone strategy profile that satisfies (7). For \(n \) sufficiently large, if \(k \) is a best response to \(\psi \) and further \(\Psi(k) = \psi \), then \(k \) is an equilibrium of \(\Gamma^n \).

Proof of Proposition 1. Since full information efficiency is achievable, by a construction similar to that in the proof of Lemma 2, there is a type-independent monotone strategy profile, \(\psi \), such that \(z(s^*, \bar{\theta}; \psi) = v_C < z(s^*_, \bar{\theta}; \psi) \). Thus, condition (7) also holds for any \(v_L \in (z(s^*, \bar{\theta}; \psi), v_C) \) and \(v_R \in (v_C, z^*(\bar{s}^*_, \bar{\theta}; \psi)) \). Note that \(z(s, \theta; \psi) \) is continuous and strictly decreases in \(\psi \). Thus, there are values \(\bar{\psi} < \psi \) such that \(z(s^*_-, \bar{\theta}, \bar{\psi}) = v_L \) and \(z(s^*_, \bar{\theta}, \psi) = v_R \).

We construct a correspondence \(A^n \) from the space of type-independent monotone strategies \([0, J]\) into itself as follows:
\[
A^n(\psi) = \begin{cases}
J & \text{if } \psi < \bar{\psi}, \\
\{ \Psi(k) : k \in BR^n(\psi) \} & \text{if } \psi \in [\psi, \bar{\psi}], \\
0 & \text{if } \psi > \bar{\psi},
\end{cases}
\]

where \(BR^n(\cdot) \) is the best-response correspondence. Since \(g^n(v | s; \psi) \) is a continuous function of \(\psi \) for all pivotal events and states, for \(n \) large enough, for each type the
best response correspondence BRn(·) is upper hemicontinuous in ψ and monotone in signal for all ψ ∈ [ψ, ¯ψ]. Thus, An(·) is upper hemicontinuous for ψ ∈ [ψ, ¯ψ]. Further, since
\[
\lim_{n \to \infty} \frac{g^n(v_L|s^-_n; \psi)}{g^n(v_R|s^n; \psi)} = \lim_{n \to \infty} \frac{g^n(v_R|s^+_n; \bar{\psi})}{g^n(v_L|s^+_n; \bar{\psi})} = 0,
\]
every type’s best response to ψ is to vote for R regardless of the signal, and the best response to ¯ψ is to vote for L regardless of the signal. Thus An(ψ) = I and An(¯ψ) = 0. The fact the A has a fixed point is an application of Kakutani’s fixed point theorem. Let ψn be a fixed point of An(·). Then there exists a best response to ψn, denoted k∗n, such that Ψ(k∗n) = ψn. Such k∗n is an equilibrium of Γn.

Finally, z(s, θ; k∗n) < z(s∗, θ; k∗n) for any s ≤ s∗. Condition (7) then implies that the pivotal event vL dominates all other events v ∈ [vL, vR] in state s ≤ s∗. Thus, for such state s,
\[
\lim_{n \to \infty} Pr[\text{recount}|s] \leq \lim_{n \to \infty} \frac{g^n(v_L|s^-_n; k^n)}{g^n(v_R|s^n; k^n)} = 0.
\]
Similarly, the limit of Pr[recount|s] is 0 for s ≥ s∗ because z(s, θ; k∗n) > z(s∗, θ; k∗n) > vR.

Since our equilibrium construction satisfies condition (7), the pivotal event vL dominates for s < s∗, and vR dominates for s ≥ s∗. Further, it must also be the case that gn(vL|s^n; k^n)/gn(vR|s^n; k^n) neither goes to zero nor to infinity, along the sequence of equilibrium strategy profiles. Otherwise, eventually it becomes a unique best response for all types to vote for the same candidate regardless of the signal observed, which is not a fixed point of An(·). This implies that along any sequence of equilibrium strategy profiles that satisfies (7):
\[
\lim_{n \to \infty} I(v_R, z(s^*, \bar{\theta}; k^n)) = \lim_{n \to \infty} I(v_L, z(s^*, \bar{\theta}; k^n)).
\]

Since for any monotone and type-independent profile ψ, the vote share function z(v, z(s, θ; ψ)) is strictly decreasing in ψ, the equal-rate condition (9) is satisfied by a unique ψI ∈ [ψ, ¯ψ]. This means that, while the existence result of Proposition 1 does not exclude that there may be multiple equilibria for each game Γn, all equilibrium strategy profiles that satisfies (7) generate, in the limit, the same distribution over vote shares—a result that we formally state in the next proposition.
Proposition 2. Let \(\{k^n\} \) be a sequence of strategy profile satisfying condition (7) and such that \(k^n \) is an equilibrium of \(\Gamma^n \) for each \(n \). Then,

\[
\lim_{n \to \infty} \Psi(k^n) = \psi^I.
\]

Proposition 1 establishes that, with an election rule that allows for costly recounting, full information equivalence can indeed be achieved as an equilibrium outcome whenever it is achievable. We provide two examples to show that in environments where full information equivalence is not an equilibrium outcome with standard elections, allowing for costly recounting will resurrect efficiency.

Example 1 (Inefficiency with aggregate uncertainty). Consider a binary-state (\(R \) and \(L \)), binary-signal (\(r \) and \(l \)) model with \(\beta(r|R) = \beta(l|L) = q \). The preferences of an informed voter of type \(t \in [0,1] \) are described by the payoff difference function:

\[
u(s,t) = \begin{cases}
1 - t & \text{if } s = R, \\
-t & \text{if } s = L.
\end{cases}
\]

The informed voters’ preference types are drawn from a uniform distribution. The fraction \(\theta \) of uninformed voters who vote for candidate \(R \) is also uniformly distributed on \([0,1]\). Let the common prior beliefs assign equal probability to the two states, and the election outcome be determined by a simple majority rule (i.e., \(v_C = \frac{1}{2} \)).

For any \(n \), in an election without re-counting, the following strategy profile for an informed voter is an equilibrium: choose candidate \(R \) if and only if his type \(t \leq q \) after observing a signal \(r \); and choose candidate \(R \) if and only if \(t \leq 1 - q \) after observing a signal \(l \). To see this, note that given the assumed strategy profile, the vote share functions are:

\[
z(R, \theta) = \alpha \theta + (1 - \alpha) \left(q^2 + (1 - q)^2 \right),
\]

\[
z(L, \theta) = \alpha \theta + (1 - \alpha) \left(2q(1 - q) \right).
\]

Thus, the probability that candidate \(R \) receives exactly half of the votes of \(n \) randomly selected voters satisfies

\[
g^n \left(\frac{1}{2} \right| R \right) = \binom{n}{n/2} \int_0^1 \left(z(R, \theta)(1 - z(R, \theta)) \right)^{n/2} d\theta
\]

\[
= \binom{n}{n/2} \int_0^1 \left(z(L, \theta)(1 - z(L, \theta)) \right)^{n/2} d\theta = g^n \left(\frac{1}{2} \right| L),
\]
where the second equality follows from the substitution $z(R, \theta) = z(L, 1 - \theta)$ and a change of variable $\hat{\theta} = 1 - \theta$. The probability of state R conditional on a tie in the vote shares of the two candidates is the same as the prior. Thus,

$$\Pr[s = R | v = v_C, \sigma] = \begin{cases} q & \text{if } \sigma = r, \\ 1 - q & \text{if } \sigma = l; \end{cases}$$

which implies that every informed agent is best-responding. Note that this is essentially the unique equilibrium of the game. For any strategy profile k, the best response of an informed agent with a signal σ is to vote for R if his type is strictly smaller than $\Pr[s = R | v = v_C, \sigma; k]$, and to vote for L if it is strictly larger. If $\Pr[s = R | v = v_C, \sigma = r; k] > q$, then $\Pr[s = R | v = v_C, \sigma = l; k] > 1 - q$. The strategy profile \hat{k} where every informed agent is best-responding to k will have the property that $g^n(\frac{1}{2} | R; \hat{k}) < g^n(\frac{1}{2} | L; \hat{k})$. Thus $\Pr[s = R | v = v_C, \sigma = r; \hat{k}] < q$, and k is not an equilibrium. Similarly, a strategy profile such that $\Pr[s = R | v = v_C, \sigma = r; k] < q$ also cannot be an equilibrium. The fact that informed agents who observe the same signal realization have the same best response imply that the only equilibrium is the one described earlier.

If $z(R, 0) = (1 - \alpha) (q^2 + (1 - q)^2) < 1/2$, the unique equilibrium does not achieve full information equivalence. For example, if $\alpha = \frac{1}{5}$ and $q = \frac{2}{3}$, then candidate L is elected in state R when the uncertainty state satisfies $\theta < \frac{5}{18}$ and candidate R is elected in state L when $\theta > \frac{13}{18}$. The overall chance that a candidate not favored by the majority of voters is elected is $\frac{5}{18}$. In the same environment, for an electoral rule with recounting and thresholds $v_L = 1/2 - \epsilon$ and $v_R = 1/2 + \epsilon$, a strategy profile \hat{k}, where informed voters “vote their signal” (i.e., vote for R when observing r and L when observing l) is an equilibrium for n sufficiently large. The expected vote share for R is at least $\frac{9}{15}$ in state R, and at most $\frac{7}{15}$ in state L. For ϵ small, the pivotal event v_L dominates the other two pivotal events in state L; the pivotal event v_R dominates in state R; and $g^n(v_L | L) = g^n(v_R | R)$ for all n. These conditions imply that for n large the strategy profile \hat{k} is an equilibrium, and achieves full information equivalence in the limit.

More generally, using Lemma 2, full information equivalence is achievable with recounting only if (6) is satisfied when informed voters “vote their signal,” or

$$z(L, \theta = 1; \hat{k}) = (1 - \alpha) (1 - q) < \frac{1}{2} < (1 - \alpha) q = z(R, \theta = 0; \hat{k}).$$

(10)
In the equilibrium without recounting, the vote share of R in state R is smaller than $\frac{1}{2}$ when
\[
\theta < \frac{1}{\alpha} \left(\frac{1}{2} - (1 - \alpha)(q^2 + (1 - q)^2) \right).
\] (11)

Suppose $q = 1/(2(1 - \alpha)) + \eta \alpha$, with $\eta > 0$ so that (10) is satisfied. Then the right-hand-side of (11) is equal to
\[
\frac{1/2 - \alpha}{1 - \alpha} - 2\eta \alpha (1 + \eta(1 - \alpha)),
\]
which is close to $\frac{1}{2}$ when α is close to 0. Thus, even a tiny fraction of uninformed voters can bring the (unique) outcome of an election without recounting close to flipping a coin, while with recounting there is still an equilibrium that achieves full information efficiency as the electorate becomes large.

Example 2 (Inefficiency with non-monotone preferences). Consider a binary-state (R and L), binary-signal (r and l) model with $\beta(r|R) = \beta(l|L) = q$. Similar to Bhat- tacharya (2013), informed voters have a two dimensional type $(t, p) \in [0, 1] \times \{i, d\}$. An informed voter of type (t, i) has the same preferences as an informed voter of type t in Example 1. The preferences of an informed voter of type (t, d) are instead described by the payoff difference function:
\[
u(s, t, d) = \begin{cases}
-(1 - t) & \text{if } s = R, \\
t & \text{if } s = L.
\end{cases}
\]

The p-component of an informed voter type determines in what direction the preference changes when the state changes. When the the payoff relevant state s changes from L to R, the favored candidate of voters with $p = i$ switches from L to R, while for voters with $p = d$ the opposite is true. Among informed voters with $p = i$ the distribution of t is uniform on the interval $[0, 1]$, while conditional on $p = d$ the distribution of t is uniform on the interval $[\frac{1}{3}, \frac{2}{3}]$. We denote with $F(t, p)$ the probability that a randomly drawn informed voter has a type (t', p) with $t' \leq t$. There are no uninformed voters.

For a simple majority election without recounting, denote with $\tilde{\mu}^n$ the probability of state R conditional on the two candidates having exactly half of n votes given an equilibrium strategy profile. The private belief that the state is R for an informed
voter who observes a signal σ is given by

$$ \Pr[s = R|\sigma; \tilde{\mu}^n] = \begin{cases} \tilde{\mu}_{i+}^n = \frac{\tilde{\mu}^{n_q}}{\tilde{\mu}^{n_q} + (1-\tilde{\mu}^{n_q})(1-q)} & \text{if } \sigma = r, \\ \tilde{\mu}_{i-}^n = \frac{\tilde{\mu}^{n_q}}{\tilde{\mu}^{n_q} + (1-q)} & \text{if } \sigma = l. \end{cases} $$

The best response property of an equilibrium implies that, upon observing a signal r, an informed voter votes for R if her p-type is i and her t-type is smaller than $\tilde{\mu}_{i+}^n$, or if her p-type is d and her t-type is larger than $\tilde{\mu}_{i+}^n$. Similarly, upon observing a signal l, an informed voter votes for R if $p = i$ and $t < \tilde{\mu}_{i-}^n$, or if $p = d$ and $t > \tilde{\mu}_{i-}^n$. Thus, given $\tilde{\mu}^n$, the equilibrium probability that a randomly drawn informed voter votes for R in state s, $z(s; \tilde{\mu}^n)$, are given by:

$$ z(R; \tilde{\mu}^n) = q(F(\tilde{\mu}^n_i, i) + F(1, d) - F(\tilde{\mu}^n_d, d)) + (1-q)(F(\tilde{\mu}^n_i, i) + F(1, d) - F(\tilde{\mu}^n_d, d)), $$

$$ z(L; \tilde{\mu}^n) = (1-q)(F(\tilde{\mu}^n_i, i) + F(1, d) - F(\tilde{\mu}^n_d, d)) + q(F(\tilde{\mu}^n_i, i) + F(1, d) - F(\tilde{\mu}^n_d, d)). $$

The limit value, $\tilde{\mu}$, of any sequence of equilibrium values $\tilde{\mu}^n$ must satisfy

$$ \left| z(R; \tilde{\mu}) - \frac{1}{2} \right| = \left| z(L; \tilde{\mu}) - \frac{1}{2} \right|. \quad (12) $$

Otherwise, either $g^n(\frac{1}{2}|R; k^n) / g^n(\frac{1}{2}|L; k^n)$ converges to 0 and the limit of $\tilde{\mu}^n$ is 0, or $g^n(\frac{1}{2}|L; k^n) / g^n(\frac{1}{2}|R; k^n)$ converges to 0 and the limit of $\tilde{\mu}^n$ is 1. In both cases (12) is satisfied.

When the fraction of informed voters with p-type equal to i is $\frac{2}{3}$ (i.e., $F(1, i) = 1 - F(1, d) = 2/3$) and the signal precision parameter $q = \frac{3}{4}$, the are five values of μ that satisfy (12). These are shown in Figure 1, which plots $z(R; \tilde{\mu})$ and $z(L; \tilde{\mu})$. The three interior values are all limit of equilibria. Note that the limit of equilibrium outcomes are all inefficient with either the same candidate being elected in both states, or the candidate favored by the minority of voters always being elected.

In an election with recounting, full information equivalence is achievable in equilibrium. For example, if $\nu_L = \frac{1}{2} - \epsilon$ and $\nu_R = \frac{1}{2} + \epsilon$, the strategy profile where all informed voters vote their signal is an equilibrium for n sufficiently large and $\frac{1}{2} + \epsilon < q$, and achieves information efficiency in the limit. \end{proof}
recounting, there will in general be other equilibria that do not achieve full information equivalence. In particular, the constructive proof of Proposition 1 relies on the premise that there exists a type-independent monotone strategy profile ψ such that $z(s^*_-, \theta; \psi) < v_c < z(s^*, \theta; \psi)$. If there exists a type-independent monotone strategy profile ψ' such that $z(s'_, \theta; \psi') < v_c < z(s', \theta; \psi')$, for some $s' \neq s^*$ and its predecessor state $s'_\$, we can replicate the proof of Proposition 1 to show that there exists a sequence of strategy profiles $\{k''_n\}$ such that k''_n is an equilibrium of the game Γ''_n for each n, and the equilibrium outcome of this game is to elect candidate R^n with probability close to 1 if $s \geq s'$, and to elect candidate L with probability close to 1 if $s < s'$. In other words, besides the equilibrium that achieves full information equivalence, an election with recount may produce other equilibrium outcomes that choose the right candidate in states lower than or equal to $\min\{s'_-, s^*_-\}$ and higher than or equal to $\max\{s', s^*\}$, but choose the wrong candidate in states between s'

Figure 1. The limit of equilibrium outcomes are all inefficient in simple majority elections. In the limit equilibrium with $\tilde{\mu} = 0.37$, candidate L wins in both states. In the limit equilibrium with $\tilde{\mu} = 0.63$, candidate R wins in both states. In the limit equilibrium with $\tilde{\mu} = 0.5$, candidate L wins in state R and candidate R wins in state L.
and s^*.

4. The Rate of Convergence to Information Efficiency

Our main result establishes that recounting can restore full information equivalence in the best equilibrium when such an outcome is not an equilibrium in a standard election without recount. But even when full information equivalence obtains in the limit of equilibria in standard elections, introducing recounting can still improve on the equilibrium outcome. In this section, we show that recounting improves the “informativeness” of the equilibrium strategy profile. That is, recounting generates a larger spread of the expected vote share for R across the two critical states s^* and s^*_-. This property explains why, with recounting, full information equivalence is more robust to aggregate uncertainty. It also implies that the information efficient outcome will be approximated at a faster rate as the size of the electorate grows.

The key to understand why recounting improves the informativeness of the equilibrium strategy profile is that the dominant pivotal events only determines whether a recount is triggered, but does not change the identity of the winner. As a result, the incentives to vote are type-independent. This allows us to construct an equilibrium where all types vote informatively (i.e., their votes change across signals). Without recounting, at the only pivotal event v_C, the vote determines the election outcome. Thus a voter’s belief over payoff relevant states and his preference type matter for his voting decision. For types whose beliefs are not significantly changed by their private signals conditional conditional on the pivotal event being realized, their votes must be uninformative.

In the following proposition, we compare a sequence of equilibria of a game Γ^n_{δ}, where it is assumed that the recounting cost is $\delta > 0$, to a sequence of equilibria of a game Γ^n_0 which differs from Γ^n_{δ} only by the absence of recounting cost (i.e., $\delta = 0$). We introduce the following assumption.

Assumption 3. For any probability distribution μ over S, there is a subset of types $T' \subseteq T$, such that $P(T') > 0$ and for all $t \in T'$

$$
\left(\sum_{s \in S} \mu^\sigma(s)u(s,t) \right) \left(\sum_{s \in S} \mu^{\sigma'}(s)u(s,t) \right) > 0 \quad \text{for all } \sigma, \sigma' \in \Sigma.
$$
If μ is the posterior belief conditional on the pivotal event v_C, then all types in T' vote un informatively in the equilibrium of Γ^n_0 as their expected payoff difference between voting R and voting L does not change sign with the voter’s private information. Assumption 3 says that there is always a positive mass of such types. Assumption 3 is both a requirement that preferences vary enough with types, and that private signals are not too informative. It is satisfied in most strategic voting models, such as, Feddersen and Pesendorfer (1997) and Bhattacharya (2013).

Proposition 3. Let $\{k^n_\delta\}$ and $\{k^n_0\}$ be two sequences of monotone strategy profiles such that: (i) both achieve full information equivalence; (ii) the sequence $\{k^n_\delta\}$ satisfies condition (7); and (iii) k^n_δ is an equilibrium of Γ^n_δ and k^n_0 is an equilibrium of Γ^n_0 for all n. Then, for all v_R and v_L sufficiently close to v_C,

$$\lim_{n \to \infty} z(s^*_-, \theta; k^n_\delta) \leq \lim_{n \to \infty} z(s^*_-, \theta; k^n_0) < \lim_{n \to \infty} z(s^*, \theta; k^n_0) \leq \lim_{n \to \infty} z(s^*, \theta; k^n_\delta),$$

with all strict inequalities if Assumption 3 holds.

Proof. The limit of the equilibrium in the game Γ^n_δ must satisfy the equal-rate condition that

$$\lim_{n \to \infty} I(v_L, z(s^*_-, \theta; k^n_\delta)) = \lim_{n \to \infty} I(v_R, z(s^*, \theta; k^n_\delta)).$$

Similarly, the limit of the equilibrium in the game Γ^n_0 must satisfy an analogous equal-rate condition:

$$\lim_{n \to \infty} I(v_C, z(s^*_-, \theta; k^n_0)) = \lim_{n \to \infty} I(v_C, z(s^*, \theta; k^n_0)).$$

Otherwise, either the ratio $g^n(v_C|s; k^n_\delta)/g^n(v_C|s^*; k^n_\delta)$ goes to 0 for all $s \neq s^*$, or the ratio $g^n(v_C|s; k^n_0)/g^n(v_C|s^*; k^n_0)$ goes to 0 for all $s \neq s^*$. In either case, every type’s best response to k^n_δ is independent of his signal, as conditional on the realization of the pivotal event the state is known, which contradicts the hypothesis that the $\{k^n_\delta\}$ achieves full information equivalence.

For all recounting thresholds sufficiently close to v_C, if $z(s^*_-, \theta; k^n_\delta) < z(s^*_-, \theta; k^n_0)$, then the two equal-rate conditions can be satisfied only if $z(s^*, \theta; k^n_\delta) > z(s^*, \theta; k^n_0)$.

5In Example 1 of section 3, types lower than t_2 or higher than t_1 do not vote informatively in a standard election. More generally, in a model with a continuum of states, Feddersen and Pesendorfer (1997) show that the fraction of informed voters who do not vote informatively in a large election without recounting goes to one.
To prove the claim it is then sufficient to show that
\[z(s^*, \theta; k^*_0) \leq z(s^*, \theta; k^*_0) \implies z(s^*, \theta; k^*_0) \leq z(s^*, \theta; k^*_0), \]
with the second inequality being strict if Assumption 3 holds.

Given the strategy profile \(k^*_0 \), we can construct a type-independent strategy profile \(\Psi \) such that \(z(s^*, \theta; k^*_0) = z(s^*, \theta; \Psi) \). By Assumption 1, we have \(z(s^*, \theta; k^*_0) \leq z(s^*, \theta; \Psi) \). Then (13) follows from observing that: (i) from the equilibrium construction in Proposition 1, there is a type independent strategy profile \(\Psi(k^*_0) \) such that \(z(s, \theta; k^*_0) = z(s, \theta; \Psi(k^*_0)) \) for all \(s, \theta \); and (ii) the vote share function \(z(s, \theta; \psi) \) is increasing in \(\psi \).

To show that the second inequality of (13) is strict if Assumption 3 holds, we construct a strategy profile \(\tilde{k} \) such that: (i) \(\tilde{k}(\sigma, t) = k^*_0(\sigma, t) \) for all types that vote un informatively in \(k^*_0 \); (ii) \(\tilde{k}(\sigma, t) = \tilde{k}(\sigma, t') \) for all types \(t, t' \) that vote informatively in \(k^*_0 \), and (iii) \(z(s^*, \theta; k^*_0) = z(s^*, \theta; \tilde{k}) \). By Assumption 1, it is still the case that \(z(s^*, \theta; k^*_0) \leq z(s^*, \theta; \tilde{k}) \). However, since there is a positive mass of types who vote un informatively and the others use a type-independent strategy,
\[z(s^*, \theta; \tilde{k}) \leq z(s^*, \theta; \Psi(k^*_0)) \implies z(s^*, \theta; \tilde{k}) < z(s^*, \theta; \Psi(k^*_0)), \]
which contradicts the equal-rate conditions for \(k^*_0 \) and \(k^*_0 \) to be both full information equivalent.

Proposition 3 establishes that the probability of a “mistake,” meaning an election outcome different from the full information outcome, is smaller in both states \(s^* \) and in state \(s^* \), when the electoral rules mandate a costly recount for a sufficiently tight election. For example,
\[\lim_{n \to \infty} \frac{\Pr[\mathcal{R} \text{ wins } | s^*; k^*_0]}{\Pr[\mathcal{R} \text{ wins } | s^*; k^*_0]} = \lim_{n \to \infty} \frac{\theta^n(v_C | s^*_0; k^*_0)}{\theta^n(v_C | s^*_0; k^*_0)} = 0, \]
because \(I(v_C, z(s^*_0, \bar{\bar{\theta}}; k^*_0)) < I(v_C, z(s^*_0, \bar{\bar{\theta}}; k^*_0)) \). Furthermore, since the probability of mistakenly electing \(\mathcal{R} \) is larger in state \(s^*_0 \) than in any other smaller state, we have
\[\lim_{n \to \infty} \frac{\Pr[\mathcal{R} \text{ wins } | s \leq s^*_0; k^*_0]}{\Pr[\mathcal{R} \text{ wins } | s \leq s^*_0; k^*_0]} = \lim_{n \to \infty} \frac{\Pr[\mathcal{R} \text{ wins } | s^*_0; k^*_0]}{\Pr[\mathcal{R} \text{ wins } | s^*_0; k^*_0]} = 0. \]
Thus, whenever an electoral rule without recounting achieves full in information equivalence, adding recounting is still beneficial by providing a faster rate of convergence to the same informationally efficient outcome.
5. Discussion

5.1. Inefficient equilibria

So far we have focused on the best equilibrium of the game Γ^n. From the equilibrium construction described in Section 3, the key properties of the strategy profile k^n in the best equilibrium are that it is “almost type-independent” and that it distinguishes between states s^* and s^*_-. Because the two dominant pivotal events (v_L and v_R) do not determine the identity of the winner, the fact that the full information equivalent outcome would select R is all states $s \geq s^*$ and would select L is all states $s \leq s^*_-$ is not used in our construction. In other words, suppose we take an arbitrary state s_i, and suppose there exists a strategy k such that it is feasible to separate state s_i from its preceding state s_{i-1}:

\[z(s_i, \theta; k) < v_L < v_R < z(s'_i, \theta; k) \quad \text{for all } s < s_i \text{ and } s'_i \geq s_i. \]

Then, the same logic that leads to Proposition 1 allows us to show that there exists a sequence of monotone strategy profiles $\{\hat{k}^n\}$ such that L is elected in all states lower than s_i and R is elected in all other states, and such that \hat{k}^n is an equilibrium of the game Γ^n.

This multiplicity of equilibria is generally not a problem in a model with binary signals (i.e., $\Sigma = \{\sigma_1, \sigma_2\}$). However, when $J > 2$, full information equivalence is achieved only when the best equilibrium that separates s^* from s^*_- is played. For example, if an equilibrium strategy profile \hat{k}^n that separates s_i from s_{i-1} is played, and if $s_i < s^*$, then this equilibrium would choose the wrong candidate R in states $s_i, s_{i+1}, \ldots, s^*_-$, when L should have been chosen for full information equivalence. Notice that all these other equilibria still have a monotone structure. In the example above with $s_i < s^*$, even when the “wrong” equilibrium strategy profile \hat{k}^n is adopted, an election with recount would still produce the “right” winner in states $s \geq s^*$ or $s \leq s_{i-1}$.

5.2. Two rounds of voting

Suppose the election rule is that candidate R is the outright winner if his vote share in the first round of voting is greater than v_R, and candidate L is the outright winner if his vote share is greater than $1 - v_L$. When neither candidate is an outright winner, there will be a second round of voting with a standard election rule v_C after
imposing a second-round voting cost δ to each voter. We claim that under this alternative specification of the election rule, the equilibrium construction for our model of election with recounting can be replicated as an equilibrium in a model with two rounds of voting.

The equilibrium construction in such a model with two voting rounds poses some additional complications. First, there is a continuum of pivotal events because any realized first-round vote share for R between v_L and v_R might in principle lead to a different continuation equilibrium. However, if the first round strategy profile satisfies the full information equivalence condition (7), then it follows from Lemma 1 that, for n sufficiently large, the only probabilistically relevant pivotal events in the first round are that $v = v_L$ in state s^*_L and that $v = v_R$ in state s^*. All other pivotal events are dominated by one of these two events. A second complication in replicating our equilibrium construction arises because, at the two relevant pivotal events, the vote of an informed voter will change the timing of the election resolution—as in the recounting model—but might also change the election outcome. However, if the first round strategy profile satisfies condition (7), then for n large the belief that the state is s^* is arbitrarily close to 1 at the pivotal event v_R, and the belief that the state is s^*_L is arbitrarily close to 1 at the pivotal event v_L. As long as in the continuation equilibrium the probability that R is elected approaches 1 (respectively, 0) when every informed voter’s belief that the state is s^* (respectively, s^*_L) is close to 1, then at the pivotal events v_L and v_R an agent’s vote affects the election outcome (i.e., which candidate wins) with a vanishing probability. In other words, the dominant consideration in the first round of voting is to avoid the cost δ incurred in a second round of voting, and our equilibrium construction for the recount model is replicated in a model with two rounds of voting.

5.3. Recount cost

Our model of election with recount does not depend on the magnitude of the recount cost δ. We only assume that δ is positive and fixed as n goes to infinity. This restriction can be further relaxed by assuming that recounting costs a fixed amount of $\Delta > 0$, and that in an election with $n+1$ voters each voter bears a cost of $\delta^n = \Delta/(n+1)$.

When $z(s^*, \theta; k^n) > v_R$, Lemma 1 and monotone strategies implies that the ratio $g^n(v|s; k^n)/g^n(v_R|s^*; k^n)$ goes to 0 as n goes to infinity for $v = v_L, v_C$ and every $s \geq$
Similarly, \(g^n(v|s;k^n)/g^n(v_L|s^*_n;k^n) \) goes to 0 as \(n \) goes to infinity for \(v = v_R, v_C \) and every \(s \leq s^*_n \). Moreover, these ratios go to 0 at an exponential rate because the rate functions of the different pivotal events are ranked. From (8), the voting incentives of an agent observing a signal realization \(\sigma \) are now described by the inequality

\[
\sum_{s \geq s^*} \mu^v(s) \left(\frac{g^n(v_R|s;k)}{g^n(v_L|s^*_n;k)} \delta^n + \frac{g^n(v_C|s;k)}{g^n(v_R|s^*_n;k)} u(s,t) - \frac{g^n(v_L|s^*_n;k)}{g^n(v_R|s^*_n;k)} \delta^n \right) g^n(v_R|s^*_n;k) \geq \\
\sum_{s < s^*} \mu^v(s) \left(-\frac{g^n(v_R|s;k)}{g^n(v_L|s^*_n;k)} \delta^n - \frac{g^n(v_C|s;k)}{g^n(v_R|s^*_n;k)} u(s,t) + \frac{g^n(v_L|s^*_n;k)}{g^n(v_R|s^*_n;k)} \delta^n \right) g^n(v_L|s^*_n;k).
\]

For \(n \) large, by Lemma 3 the left-hand-side of the above still becomes arbitrarily close to \(\mu^v(s^*)g^n(v_R|s^*_n;k)\delta^n \), and the right-hand-side is still arbitrarily close to \(\mu^v(s^*)g^n(v_L|s^*_n;k)\delta^n \). This is because, even though the recount cost \(\delta^n \) goes to 0 as \(n \) goes to infinity, it goes to 0 only at the rate \(1/n \). The remainder of the proof of Proposition 1 goes through with no change.

5.4. Counting errors

Our model does not allow for counting errors, so that the vote count in the initial stage is identical to the vote count in the recount stage. There are different ways to introduce counting errors. We consider two alternatives.

In the first version of a model with counting error, we assume that each vote for candidate \(R \) has an independent probability \(\zeta < 1/2 \) of being miscounted as a vote for candidate \(L \), and likewise each vote for \(L \) has an independent probability \(\zeta \) of being miscounted as a vote for \(R \). Further assume that if there is a recount, all the counting errors are corrected. Under these assumptions, if the true vote share for candidate \(R \) is \(v \), the initial vote count for \(R \) will be

\[
v_e = (1 - \zeta)v + \zeta(1 - v).
\]

Note that \(v_e > v \) if and only if \(v < \frac{1}{2} \), which is due to regression to the mean. Define

\[
v'_L \equiv \frac{v_L - \zeta}{1 - 2\zeta}, \quad v'_R \equiv \frac{v_R - \zeta}{1 - 2\zeta}.
\]

Then, under the election rule \(\{v'_L, v'_C, v'_R\} \), the election would go into the recount stage if the true vote share \(v \) for \(R \) is between \(v'_L \) and \(v'_R \).
With recounting errors, whether full information efficiency is achievable now depends on the specifics of the electoral rule as well as the probability of miscounting. Specifically, full information equivalence is achievable if there exists a strategy profile \(k \) such that
\[
z(s, \bar{\theta}; k) < \min \{ v'_L, v_C \} \leq \max \{ v'_R, v_C \} < z(s', \bar{\theta}; k) \quad \text{for all } s < s^* \text{ and } s' \geq s^*. \tag{14}
\]
Condition (14) and the original condition (6) for achievability coincide whenever
\[
v'_L < v_C < v'_R. \tag{15}
\]
Unless \(v_C = \frac{1}{2} \), in which case (15) holds for any pair of \((v_L, v_R) \), it is possible that (15) may not hold.

To replicate the equilibrium construction of Proposition 1, condition (15) is necessary. In the original argument to establish Proposition 1, the requirement (14) is satisfied by taking \(v_L \) and \(v_R \) sufficiently close to \(v_C \). In the presence of recounting errors this is not possible, as recounting thresholds that are too tight may lead to inefficiencies through identifying the true loser to be the winner. However, for any pair \((v_L, v_R) \), if the recounting error \(\zeta \) is sufficiently small, then (15) holds. Further, for all pairs \((v_L, v_R) \) sufficiently close to \(v_C \), if a strategy profile satisfies (6), then there exists \(\zeta \) sufficiently small such that this strategy profile also satisfies (14). Thus, the equilibrium construction of Proposition 1 can be replicated provided the recounting error is small enough. We can summarize this discussion in the following statement.

Proposition 4. Suppose full information equivalence is achievable for an electoral rule. If \(\delta > 0 \), for all \(v_L, v_R \) sufficiently close to \(v_C \) there is a \(\zeta(v_L, v_R) > 0 \) such that, for all miscounting probabilities \(\zeta < \zeta(v_L, v_R) \), there exists a sequence of monotone strategy profiles \(\{ k^n \} \) that achieves full information efficiency, and such that \(k^n \) is an equilibrium of the game \(\Gamma^n \) for each \(n \).

Our second model of counting errors assumes system-wide errors instead of independent mistakes in counting each ballot. For example, such correlated errors may occur when a certain counting protocol (how to deal with hanging chads, etc.) is not properly followed, so that all the votes in the same polling station or even the entire election are miscounted in a specific way. To model these errors, we assume that if the true vote share for candidate \(R \) is \(\nu \), then upon the initial count the vote
share is recorded as

\[
v_e = \begin{cases}
1 & \text{if } v + \xi > 1, \\
0 & \text{if } v + \xi < 0, \\
v + \xi & \text{otherwise.}
\end{cases}
\]

In the above, \(\xi \) is a random variable with positive and continuous density on the support \([\xi, \xi] \). Upon recounting, all errors are detected so that the election outcome is based on the true vote share \(v \). The effect of the systematic counting error \(\xi \) is very similar to the effect of aggregate uncertainty \(\theta \), except that \(\xi \) only influences the initial vote share but not the final tally. Specifically, if \(z(s^*, \theta; k^n) + \xi > v_R \), then in state \(s \) the pivotal event \(v_e = v_R \) dominates the other pivotal events \(v = v_C \), and \(v_e = v_L \) for sufficiently large \(n \). Proposition 1 continues to hold if there exists a strategy profile \(k \) such that

\[
z(s^*, \theta; k) + \bar{\xi} < v_C < z(s^*, \theta; k) + \xi.
\]

While (16) is stronger than the requirement that full information efficiency is achievable, it is implied by the latter whenever the distribution of the systemwide error is sufficiently concentrated (i.e. \(\bar{\xi} - \xi \) is sufficiently small). Thus, similarly to the first model of counting errors, the result of Proposition 1 is robust to the introduction of small recounting errors. However, it is also worth noting that (16) is not necessary for full information efficiency to be achievable in the presence of recounting errors, which only requires that the counting error is not so large to induce the wrong election outcome without recounting, or

\[
z(s^*, \theta; k) + \bar{\xi} < v_R \quad \text{and} \quad v_L < z(s^*, \theta; k) + \xi.
\]

5.5. Uncertain size of electorate

The analysis presented here can be generalized to the case with an uncertain electorate size if we assume that the number of voters is \(N \), with \(N \) being a Poisson random variable with mean \(n \). Myerson (1998; 2000) develops the tools to study such Poisson games.

Recall that from Stirling’s approximation to the binomial probability in equation (3), the rate at which the pivotal probability that the vote share equals \(v \) goes to 0 is
given by:
\[
\lim_{n \to \infty} \frac{\log g^n(v|s, \theta; k_n)}{n} = \log I(v; z(s, \theta; \kappa_n)).
\]
In contrast, Myerson (2000) shows that in a Poisson model, the corresponding rate is:
\[
\lim_{n \to \infty} \frac{\log g^n(v|s, \theta; k_n)}{n} = I(v; z(s, \theta; \kappa_n)) - 1.
\]
Since \(I - 1 \) is an increasing transformations of \(\log I \), given any \(v, s \) and \(k^n \), the \(\theta \) that maximizes \(\log I \) in the model with no population uncertainty also maximizes \(I - 1 \) in the Poisson model. Lemma 1 then implies that if \(z(s^*, \theta; k^n) > v_R \), then the event \(v = v_R \) dominates the events \(v = v_C \) and \(v = v_L \) in every state \(s \geq s^* \). Likewise, if \(z(s^*_-, \theta; k^n) < v_L \), then the event \(v = v_L \) dominates the events \(v = v_C \) and \(v = v_R \) in every state \(s \leq s^*_- \). All the results in the current paper remains intact in the Poisson model.

6. Concluding Remarks

This paper is an outgrowth of our earlier papers (Damiano, Li and Suen, 2010; 2013) that use costly delay to improve information aggregation in a two-agent negotiation problem. Here, we introduce multiple pivotal events to resurrect informative voting in large elections. The key to our equilibrium construction relies on the fact that, while the probabilities of different pivotal events are all vanishingly small in large elections, the rate at which they go to zero can be ranked. Since the desire to avoid recount cost is preference-independent, and since pivotal events triggering a recount dominate the pivotal event involving a tie between the candidates, we demonstrate how informative voting by all types can be an equilibrium in large elections with recount, producing asymptotically information efficient outcomes which may otherwise be infeasible in standard elections. The analysis of elections with multiple pivotal events also features in Razin (2003) in the context of signaling policy preference by voters, and in Bouton and Castanheira (2012) and Ahn and Oliveros (2012) in models of multi-candidate and multi-issue voting.

In this paper we have considered the Condorcet jury theorem in large elections. In a jury setting, Feddersen and Pesendorfer (1998) show that a unanimous conviction rule in jury decisions may lead to higher probability of false conviction as well as false acquittal than the simple majority rule, and the probability of convicting an innocent defendant may increase with the size of the jury. More relevant to
the present paper is a recent literature that asks whether the Condorcet jury theorem continues to hold when acquiring information is costly to individual agents. Mukhopadhaya (2005) shows that in a symmetric mixed strategy equilibrium, as the number of committee members increases, each member chooses to collect information with a smaller probability. He finds examples in which, using the majority rule, a larger committee makes the correct decision with a lower probability than does a smaller one. Koriyama and Szentes (2009) consider a model in which agents choose whether or not to acquire information in the first stage, and then the decision is made according to an ex post efficient rule in the second stage. They show that there is a maximum group size such that in smaller groups each member will choose to collect evidence, and the Condorcet jury theorem fails for larger groups. However, in a model with the quality of information as a continuous choice variable, Martinelli (2006) shows that if the marginal cost of information is near zero for nearly irrelevant information, then there will be effective information aggregation despite the fact that each individual voter will choose to be very poorly informed. In a recent paper, Krishna and Morgan (2012) show that when participation in an election is costly but voluntary, those who choose to participate will vote informatively even in a standard election. However the fraction of participating voters is vanishingly small in a large election, rendering asymptotic information efficiency difficult to achieve if there is aggregate uncertainty in the model.
References

Damiano, Ettore; Li, Hao; and Suen, Wing (2010). “Delay in Information Aggregation.” Working paper, University of Toronto.

